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ABSTRACT
Multimodal learning has been widely studied and applied due to
its improvement over previous unimodal tasks and its effectiveness
on emerging multimodal challenges. However, it has been reported
that modal encoders are under-optimized in multimodal learning in
contrast to unimodal learning, especially when some modalities are
dominant over others. Existing solutions to this problem suffer from
two limitations: i) they merely focus on inter-modal balance, failing
to consider the influence of intra-modal data on each modality; ii)
their implementations heavily rely on unimodal performances or
losses, thus being suboptimal for the tasks requiring modal interac-
tions (e.g., visual question answering). To tackle these limitations,
we propose I2MCL, a generic Intra- and Inter-Modal Curriculum
Learning framework which simultaneously considers both data
difficulty and modality balance for multimodal learning. In the
intra-modal curriculum, we adopt a pretrained teacher model to
obtain knowledge distillation loss as the difficulty measurer, which
determines the data weights within the corresponding modality. In
the inter-modal curriculum, we utilize a Pareto optimization strat-
egy to measure and compare the gradients from distillation loss
and task loss across modalities, capable of determining whether a
modality should learn from the task or its teacher. Empirical exper-
iments on various tasks including multimodal classification, visual
question answering and visual entailment demonstrate that our
proposed I2MCL is able to tackle the under-optimized modality
problem and bring consistent improvement to multimodal learning.
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1 INTRODUCTION
Multimodal learning is an approach to building models that can
process and integrate information from multiple heterogeneous
data modalities [6, 46], including image, text, audio, video and table.
Since numerous tasks in the real world involve multiple modali-
ties, multimodal learning has become increasingly important and
attracted widespread attention as an effective way to accomplish
these tasks. Existing multimodal tasks can be roughly divided into
two branches based on whether the target can be predicted with
a single modality or not, as stated by [46]. One is evolved from
previous unimodal tasks and named modal fusion problem, where
the modalities capable of individually predicting results are fused
together to enhance predictions. Typical tasks include multimodal
classification [5, 8, 11, 13, 14, 17, 29, 35–37, 43, 69, 79, 80] and regres-
sion [40–42, 58]. The other in contrast requires interaction among
modalities, and in this paper, we name it modal interaction problem,
where multiple modalities need to link, query or retrieve from each
other to jointly predict the results. Typical instances include cross-
modal question answering [1, 4, 25], grounding [77], reasoning [66],
entailment [74] and retrieval [47, 76].

Despite the success of multimodal learning, it is widely observed
that modal encoders are under-optimized and modal representa-
tions are inferior in multimodal learning compared to their uni-
modal counterparts, as illustrated in Figure 1. Although this problem
is reported by several recent studies [19, 34, 50, 67, 70, 73], they do
not reach full agreement on its definitions and causes. For example,
it is called “modality failure” in [19], “greedy nature” in [73] and
“modality collapse” in [34], and it is claimed to happen because of
“suppression of dominant modalities” in [50] and “different conver-
gence rates” in [67, 70]. To sum up, the mainstream thoughts about
this problem are as follows: i) modality varies in optimization, so
a single strategy is insufficient; ii) modality varies in dominance,
so weak ones are suppressed and fail to get enough training from
the task. Therefore, these existing works are devoted to balancing
learning among modalities to deal with the problem.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3581783.3612468
https://doi.org/10.1145/3581783.3612468


MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Yuwei Zhou, Xin Wang, Hong Chen, Xuguang Duan, & Wenwu Zhu

0.0

0.2

0.4

0.6

0.8

1.0

audio vision text

A
cc

u
ra

cy

Modality

Unimodal

Multimodal

(a) MUStARD

0.0

0.2

0.4

0.6

0.8

1.0

audio vision text

A
cc

u
ra

cy
Modality

Unimodal

Multimodal

(b) CMU-MOSI

0.0

0.2

0.4

0.6

0.8

1.0

audio vision text

A
cc

u
ra

cy

Modality

Unimodal

Multimodal

(c) UR-FUNNY

0.0

0.2

0.4

0.6

0.8

1.0

audio vision text

A
cc

u
ra

cy

Modality

Unimodal

Multimodal

(d) CMU-MOSEI

0.0

0.2

0.4

0.6

audio vision

A
cc

u
ra

cy

Modality

Unimodal

Multimodal

(e) VGGSound [19]

0.0

0.2

0.4

0.6

audio vision

A
cc

u
ra

cy

Modality

Unimodal

Multimodal

(f) VGGSound [50]

Figure 1: Performances of modalities in unimodal and multimodal models evaluated by linear probing, i.e., fixing trained
encoder and finetuning linear output layer. Figures (a) to (d) come from our experiments, (e) from [19], and (f) from [50]. All
modalities are under-optimized in multimodal learning compared to unimodal learning.

However, existing investigations and solutions to this problem
suffer from two limitations. i) They only consider the inter-modal
imbalance but ignore the influence of intra-modal data on each
modality. An intuitive example is that when a modal encoder con-
tinuously encounters difficult or even noisy data instances beyond
its competence, the representations it outputs can mislead the final
result, resulting in its weak positions among all modalities. ii) They
only focus on the suppression of strong modalities over weak ones,
but neglect the influence of weak ones on strong ones. As long as
there is a fusion or interaction module in the model, while being
suppressed, the under-optimized weak ones can also be detrimental
to the performance of strong ones, resulting in overall subopti-
mal. We will give a theoretical interpretation of this statement in
Section 3.2. Therefore, it is necessary to enhance all modalities,
regardless of weak or strong, from the perspective of intra-modal
data to comprehensively improve multimodal learning.

Based on the foregoing discussions, in this paper, we propose to
simultaneously consider intra-modal data difficulty and inter-modal
modality balance. Nevertheless, how to measure data difficulty and
modality imbalance remains a challenge that current works fail to
tackle. Current metrics for modality imbalance include unimodal
outputs, losses and performances, which can only be derived in
modal fusion tasks, where outcomes from a single modality can
perform predictions. But in modal interaction tasks such as visual
question answering, where the answers are jointly determined by
images and questions, unimodal outputs are biased or invalid, thus
making the existing metrics and methods become suboptimal.

To tackle the problem and the challenge mentioned above, we
propose an Intra- and Inter-ModalCurriculumLearning framework
(I2MCL) for multimodal learning. In the intra-modal curriculum,
we employ a pretrained teacher model for each modality to acquire
knowledge distillation loss as the measurer of data difficulty, which
determines the data weights within the corresponding modality,
so that all modalities can be optimized in an easy-to-hard manner.
In the inter-modal curriculum, we utilize a Pareto optimization
strategy to measure the gradient relationship between distillation
loss and task loss backpropagated to each modal encoder, which is
compared across modalities to decide whether a modality should
learn from the task or its teacher. As such, weak modalities can
first benefit from the extra knowledge from their teachers to catch
up with strong ones and then try to learn from the task, instead of
learning little under the suppression all the time.

To verify the effectiveness as well as the generality of I2MCL,
we apply it to six multimodal datasets, covering both branches of

multimodal tasks. The comparative empirical results with existing
works demonstrate that ourmethod can bringmore improvement to
multimodal learning, and the ablative experimental results present
how our method works to alleviate the under-optimized modality
problem. To summarize, our contributions are listed as follows,

• We present a new perspective from intra-modal data and inter-
modal mutual influence to explain the under-optimized modality
problem in multimodal learning.

• We propose an intra- and inter-modal curriculum framework to
address the problem by considering data difficulty and modality
balance, applicable to both modal fusion and interaction tasks.

• Empirical experiments demonstrate the benefit and improvement
our method brings compared to existing works.

2 RELATEDWORK
2.1 Multimodal Learning
Multimodal learning serves as an effective way to cope with real-
world tasks involving multiple sources of data [6]. One of the ear-
liest relevant studies is audio-visual speech recognition [78]. In
the current era of deep learning and large model, there are lots
of other applications such as detection, search, recommendation
and generation [84] with the input of image, text, audio, video and
table [62]. The taxonomy of multimodal learning is diverse. For
example, it can be divided according to fusion strategies [53], model
frameworks [27], multimodal challenges [6], etc. In this paper, we
follow [46] and partition it into fusion problems and interaction
problems on the basis of whether a single modal can make a pre-
diction individually, so that we can clarify the universality of our
method.

2.2 Under-Optimized Modality Problem
In spite of the wide application of multimodal learning, many recent
works have reported the phenomenon thatmodalities inmultimodal
learning are not fully trained, optimized or exploited. It is mainly
discovered in modal fusion tasks where the performances of single
modalities are easy to derive. Wang et al. [70] point out unimodal
networks can perform better than multimodal ones, give an ex-
planation of different fitting rates among modalities, and propose
a Gradient-Blending (GB) method. Du et al. [19] name the prob-
lem modality failure, give a hypothesis of modality imbalance and
implicit bias, and propose a Uni-Modal Teacher (UMT) method.
Sun et al. [67] propose a balanced learning rates method based
on Adaptive Tracking Factor (ATF). Javaloy et al. [34] name the



Intra- and Inter-Modal Curriculum for Multimodal Learning MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

problem modality collapse and propose an impartial optimization
method to mitigate it in multimodal VAEs. Wu et al. [73] come
up with a greedy learner hypothesis and propose a re-balancing
method based on Conditional Learning Speed (CLS). Peng et al. [50]
give an opinion of modality dominance and propose an On-the-fly
Gradient Modulation with Generalization Enhancement (OGM-GE)
method. The most related work to ours is UMT, which also utilizes
knowledge distillation to assist multimodal learning, but like all
the works mentioned above, it only considers inter-modal balance
and is limited in applications as we have mentioned in Section 1.

2.3 Curriculum Learning
Curriculum learning is a machine learning strategy that trains a
model from easy to hard, mimicking the way that humans learn
with curricula [7, 64, 71]. It can guide and denoise the machine
learning process, thereby accelerating model convergence and im-
proving model generalization. Bengio et al. [7] first give its formal
definition and propose a simple method named Baby Step [65].
After that, various methods have been continuously emerging, in-
cluding Self-Paced Learning [12, 21, 39], Transfer Teacher [28, 72],
Reinforcement Learning Teacher [26, 83] and others [54, 59, 63].
The key components of curriculum learning include a difficulty
measurer to tell what is hard to learn and a learning scheduler to
decide when to learn the harder part. In this paper, we introduce
our method precisely through these two components of curriculum
learning for the sake of clarity.

2.4 Knowledge Distillation
Knowledge distillation refers to the transfer of knowledge from
teacher models to student ones. Since it is proposed for the goal
of model compression [10], teacher models are usually large-scale,
ensembled and pretrained, while students are relatively small and
fast, which is named offline distillation [23, 32, 57, 68, 81]. There
are also methods of online distillation [3, 82], where teacher and
student models are trained simultaneously, and self-distillation
[15, 45], where teacher and student models are the same. Apart from
the training strategy, the form of knowledge is another important
component [24], which can be categorized into response-based [32],
feature-based [56] and relation-based [75]. In this paper, we adopt
offline distillation and feature-based knowledge.

2.5 Multi-Objective Optimization
Multi-objective optimization aims to handle the optimization prob-
lem of multiple possibly contrasting objectives [20, 49]. It is widely
applied in machine learning tasks, such as multi-agent learning [51],
kernel learning [44], sequential decision making [55], Bayesian op-
timization [31], multi-task learning [61], etc. In this paper, we use
the gradient-based Pareto optimization method named multiple
gradient descent algorithm (MGDA) [18, 22, 60] not to resolve the
gradient conflicts but to measure and compare the relationship
among the conflicting gradients across modalities as the difficulty
measurer for the inter-modal curriculum. Besides, to decrease time
complexity and avoid the computational bottleneck of repeat back-
propagation from loss to encoders, we follow MGDA-UB proposed
in [61] and approximate the gradient of a modal encoder with that
of a modal representation when implementing the algorithm.

3 PRELIMINARY
3.1 Multimodal Learning
For simplicity of description, we first formulate a general definition
of multimodal learning. Given a dataset D = {(𝑥𝑖1, ..., 𝑥𝑖𝑀 , 𝑦𝑖 )}𝑁𝑖=1
with 𝑁 data samples and 𝑀 modalities, the 𝑚𝑡ℎ (1 ≤ 𝑚 ≤ 𝑀)
modality of the 𝑖𝑡ℎ (1 ≤ 𝑖 ≤ 𝑁 ) data 𝑥𝑖𝑚 can be a static one or a
temporal one 𝑥𝑖𝑚 = (𝑥1

𝑖𝑚
, ..., 𝑥𝑇

𝑖𝑚
) of 𝑇 length, and the label 𝑦𝑖 can

refer to a class, a matching, an answering, etc., according to the
target task. A multimodal model aims to predict the results:

𝑦𝑖 = 𝑓0 (𝑓1 (𝑥𝑖1;𝜃1), ..., 𝑓𝑀 (𝑥𝑖𝑀 ;𝜃𝑀 );𝜃0), (1)

where 𝑓0 is a multimodal module parameterized by 𝜃0 and 𝑓𝑚 is
a unimodal encoder with 𝜃𝑚 . Like other machine learning tasks,
the training objective is to minimize the empirical risk between
predictions and truths:

min
𝜃0,𝜃1,...,𝜃𝑀

1
𝑁

𝑁∑︁
𝑖=1

L(𝑦𝑖 (𝑥𝑖1, ..., 𝑥𝑖𝑀 ;𝜃0, 𝜃1, ..., 𝜃𝑀 ), 𝑦𝑖 ). (2)

3.2 Under-Optimized Modality Problem
Modality Imbalance in Naive Fusion Settings. Literature [19]

and [50] have described in detail the problem of modality imbalance
in naive fusion settings. Without loss of generality, we consider the
simplest multimodal model with two modalities, a concentration
fusion and the optimization objective of cross-entropy loss. If we de-
note unimodal representations 𝑓𝑚 (𝑥𝑖𝑚 ;𝜃𝑚) as 𝑧𝑖𝑚 , the multimodal
representation 𝑓0 (𝑧𝑖1, ..., 𝑧𝑖𝑀 ;𝜃0) as 𝑧𝑖0 and loss L(𝑦𝑖 , 𝑦𝑖 ) as 𝑙𝑖 , the
conditions above can be formulated as𝑀 = 2, 𝑧𝑖0 =𝑊1𝑧𝑖1+𝑊2𝑧𝑖2+𝑏,
𝑦𝑖 = Softmax(𝑧𝑖0), and then the gradients from loss to the two
modal encoders are:

∇𝜃1𝑙𝑖 = ∇𝜃1𝑧𝑖0 ∇𝑧𝑖0𝑙𝑖 ,

∇𝜃2𝑙𝑖 = ∇𝜃2𝑧𝑖0 ∇𝑧𝑖0𝑙𝑖 ,

∇𝑧𝑖0𝑙𝑖 = Softmax(𝑊1𝑧𝑖1 +𝑊2𝑧𝑖2 + 𝑏) − 𝑦𝑖 .

(3)

If the 1𝑠𝑡 modality is strong and 2𝑛𝑑 is weak, it can be concluded
that the 1𝑠𝑡 modality can i) dominate the gradient descent through
its more contribution on ∇𝑧𝑖0𝑙𝑖 via𝑊1𝑧𝑖1 > 𝑊2𝑧𝑖2, because the
property of Softmax is similar to Max [50]; ii) stop the optimization
of the 2𝑛𝑑 modality by making ∇𝜃2𝑙𝑖 → 0 via ∇𝑧𝑖0𝑙𝑖 → 0 when the
1𝑠𝑡 modality has already converged [19].

Under-Optimized Modality in Multimodal Settings. Based
on the explanation of modality imbalance, we further propose a
theoretical analysis of the under-optimized problem due to mutual
influence among all the modalities. The premise of this problem
is that the multimodal model has at least a fusion or interaction
module, instead of only voting at the decision level.

Consider the gradient from 𝑙𝑖 to 𝜃𝑚 :

∇𝜃𝑚 𝑙𝑖 = ∇𝜃𝑚𝑧𝑖𝑚 ∇𝑧𝑖𝑚𝑧𝑖0 ∇𝑧𝑖0𝑙𝑖 , (4)

and the functional relationship between 𝑧𝑖𝑚 and 𝑧𝑖0:

𝑧𝑖0 = 𝑓0 (𝑧𝑖1, ..., 𝑧𝑖𝑀 ;𝜃0), (5)

there must exist the function 𝑔 and functions ℎ𝑚 such that:

∇𝑧𝑖0𝑙𝑖 = 𝑔(𝑧𝑖0 (𝑧𝑖1, ..., 𝑧𝑖𝑀 )), (6a)

∇𝑧𝑖𝑚𝑧𝑖0 = ℎ𝑚 (𝑧𝑖1, ..., 𝑧𝑖𝑀 , 𝜃0), (6b)
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Figure 2: The overall framework of I2MCL.

so the gradient backward from loss to each encoder ∇𝜃𝑚 𝑙𝑖 are
influenced by other modal representations 𝑧𝑚′ (𝑚′ ≠𝑚). It is worth
noting that Equation (6b) can degenerate to ∇𝑧𝑖𝑚𝑧𝑖0 = ℎ𝑚 (𝜃0) in
naive fusion settings but Equation (6a) is always the case, e.g.,
∇𝑧𝑖0𝑙𝑖 = Softmax(𝑧𝑖0) −𝑦𝑖 for cross-entropy loss and ∇𝑧𝑖0𝑙𝑖 = 𝑧𝑖0 −
𝑦𝑖 for mean-squared-error loss. Therefore, the under-optimized
modalities can do harm to others with their inferior representations,
leading to overall suboptimal.

4 METHOD
In this section, we propose our I2MCL, a generic multimodal cur-
riculum learning method, composed of an intra-modal curriculum
(Section 4.1) and an inter-modal curriculum (Section 4.2). For a
clearer description, we present both of them in terms of curriculum
design, difficulty measurer and learning scheduler from the per-
spective of curriculum learning. Lastly, we summarize the overall
framework of I2MCL (Section 4.3).

4.1 Intra-Modal Curriculum
Curriculum Design. The first and key step to deal with the

under-optimized modality problem is to optimize them further
based on their intra-modal data. We design an intra-modal curricu-
lum by introducing offline distillation with feature-based knowl-
edge, from which the distillation loss acts as the data difficulty
measurer. It does not depend on extra labels or unimodal perfor-
mances but only needs one forward propagation in each training
step, ensuring the generality and efficiency of our method.

Difficulty Measurer. We employ a pretrained teacher model
𝑔𝑚 parameterized by 𝜙𝑚 and adopt the 𝐿2 norm distance as the
optimization objective to distill knowledge for the𝑚𝑡ℎ modality:

min
𝜃𝑚

1
𝑁

𝑁∑︁
𝑖=1

∥ 𝑓𝑚 (𝑥𝑖𝑚 ;𝜃𝑚) − 𝑔𝑚 (𝑥𝑖𝑚 ;𝜙𝑚)∥22 . (7)

We denote the distillation loss from Equation (7) as L𝑚 , and
regard the distillation loss 𝑙𝑖𝑚 of the data instance 𝑥𝑖𝑚 such that
L𝑚 = 1

𝑁

∑𝑁
𝑖=1 𝑙𝑖𝑚 as the difficulty measurer of 𝑥𝑖𝑚 for the modal

encoder 𝑓𝑚 . For the sake of comprehensiveness, we treat multi-
modality as a special modality, denote the task loss from Equation
(2) as L0 and view the task loss 𝑙𝑖0 of the data pair 𝑥𝑖 as the diffi-
culty measurer of 𝑥𝑖 for the whole model. Within each modality,
we split all data into two parts, the hard ones and the easy ones, by
comparing their losses to the moving average 𝜆𝑚 of losses L𝑚 :

𝜆
(𝑡 )
𝑚 = 𝛾𝑚𝜆

(𝑡−1)
𝑚 + (1 − 𝛾𝑚)L (𝑡 )

𝑚 , (8)

where 𝛾𝑚 ∈ [0, 1] is a discount factor and 𝑡 refers to training steps.
A relatively large 𝑙𝑖𝑚 satisfying 𝑙 (𝑡 )

𝑖𝑚
> 𝜆

(𝑡 )
𝑚 means that the encoder

has not been able to represent 𝑥𝑖𝑚 well in the current training
step, so we can treat 𝑥𝑖𝑚 as hard data and decrease its weight,
while a small loss value 𝑙 (𝑡 )

𝑖𝑚
≤ 𝜆

(𝑡 )
𝑚 represents easy data worthy

of an increased weight. Based on the losses as the data difficulty
measurers, we can realize specific curricula for all modalities and
teach them from easy to hard with the learning scheduler described
in the next paragraph.

Learning Scheduler. The scheduler that guides the learning
of each modality is implemented through data reweighting. The
weight𝑤𝑖𝑚 assigned to data 𝑥𝑖𝑚 impacts the learning process by
scaling the loss: 𝑤𝑖𝑚𝑙𝑖𝑚 , where 𝑤𝑖𝑚 should at least satisfies the
following conditions to be consistent of the core idea of curriculum
learning, i.e., from easy to hard:

𝑤𝑖𝑚 = 𝑤𝑖𝑚 (𝑙𝑖𝑚, 𝜆𝑚), (9)

∀ 𝑙𝑖𝑚 ≤ 𝑙 𝑗𝑚, s.t. 𝑤𝑖𝑚 ≥ 𝑤 𝑗𝑚 ≥ 0. (10)

Specifically, we follow [12] and obtain𝑤𝑖𝑚 by minimizing the
reweighted loss attached with curriculum regularizers, composed
of a negative 𝐿1 regularizer with 𝜆𝑚 to distinguish between hard
and easy data, and a positive log-𝐿2 regularizer to force𝑤𝑖𝑚 close
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to 1 and avoid very high value just like weight decay :

min
𝑤𝑖𝑚

𝑤𝑖𝑚𝑙𝑖𝑚 − 𝜆𝑚𝑤𝑖𝑚 + 𝛽𝑚 (log𝑤𝑖𝑚)2, (11)

where 𝛽𝑚 ≥ 0 is a hyperparamter to control the latter regularizer.
By treating 𝑙𝑖𝑚 and 𝜆𝑚 as fixed values and𝑤𝑖𝑚 as a variable, the

result of Equation (11) can be solved as the root of the derivative:

𝑤𝑖𝑚 =


𝑒, 𝑙𝑖𝑚 − 𝜆𝑚 ≤ −2𝛽𝑚/𝑒,

𝑒
−W( 𝑙𝑖𝑚−𝜆𝑚

2𝛽𝑚 )
, 𝑙𝑖𝑚 − 𝜆𝑚 > −2𝛽𝑚/𝑒,

(12)

where W refers to Lambert W function. The detailed process of
deriving𝑤𝑖𝑚 value from Equation (12) with the Alternative Opti-
mization Strategy (AOS) is described in the Appendix. Besides, the
function between𝑤𝑖𝑚 and 𝑙𝑖𝑚 −𝜆𝑚 is also plotted in the Appendix,
visually demonstrating that𝑤𝑖𝑚 satisfies the conditions of Equation
(9) and (10).

4.2 Inter-Modal Curriculum
Curriculum Design. The other indispensable step is to bal-

ance learning among modalities, preventing weak modalities from
being suppressed. Therefore, we design an inter-modal curricu-
lum to instruct modalities whether to learn from the target task or
from knowledge distillation, according to the gradient relationship
between distillation loss and task loss as the difficulty measurer.

Difficulty Measurer. For each modal encoder 𝑓𝑚 , there are two
gradients backward to it, i.e., ∇𝜃𝑚L𝑚 and ∇𝜃𝑚L0 from distillation
loss and task loss respectively. Although both of them are intended
to improve the semantic representation capability of the encoder,
they will inevitably conflict with each other to a certain extent.
We make use of the conflict relationship as a measurer to com-
pare which is more difficult for 𝑓𝑚 to learn, the target task or the
knowledge distillation.

Borrowing the idea of multi-objective optimization, when shared
parameters are optimized by multiple objectives, the goal becomes
reaching Pareto optimality by coordinating possibly contrasting
directions, so we consider the optimization problem for each modal
encoder with the condition of 𝛼𝑚 ∈ [0, 1]:

min
𝛼𝑚

∥𝛼𝑚∇𝜃𝑚L𝑚 + (1 − 𝛼𝑚)∇𝜃𝑚L0∥22 . (13)

It is proved that the solution is either 0 or provides a direction to
optimize both of them. If we abbreviate ∇𝜃𝑚L𝑚 and ∇𝜃𝑚L0 as ∇𝑚
and ∇0 respectively for the𝑚𝑡ℎ modality, the solution of Equation
(13) can be written as:

𝛼𝑚 =


0, ∇𝑇𝑚∇0 ≥ ∇𝑇0 ∇0,

1, ∇𝑇𝑚∇0 ≥ ∇𝑇𝑚∇𝑚,

(∇0 − ∇𝑚)𝑇∇0
∥∇0 − ∇𝑚 ∥22

, others.

(14)

The proof and calculation process along with their visualizations
are included in the Appendix.

From Equation (14), 𝛼𝑚 well reflects the magnitude and direction
relationship between two gradients. For example, 𝛼𝑚 → 1 means
∥∇0∥22 > ∥∇𝑚 ∥22 when they form an acute angle or ∥∇0∥22 ≫
∥∇𝑚 ∥22 when an obtuse angle, in which cases the 𝑚𝑡ℎ modality
learns much more from task loss than distillation loss, and in other

words, learning from the task is easier than from its teacher. There-
fore, we take 𝛼 as the difficulty measurer to decide whether to learn
from the target task or from knowledge distillation.

Another point worth noticing is that procedure of resolving
𝛼𝑚 is time-consuming especially when the number of the encoder
parameters 𝜃𝑚 is extremely large, because it requires twice back-
propagations, from L𝑚 and L0 to 𝜃𝑚 respectively. To avoid this
computational bottleneck, we follow [61] and calculate 𝛼𝑚 with
the estimation of ∇𝜃𝑚L𝑚 and ∇𝜃𝑚L0:

∥∇𝜃𝑚L𝑚 ∥22 ≤ ∥∇𝜃𝑚𝑍𝑚 ∥22∥∇𝑍𝑚
L𝑚 ∥22,

∥∇𝜃𝑚L0∥22 ≤ ∥∇𝜃𝑚𝑍𝑚 ∥22∥∇𝑍𝑚
L0∥22,

(15)

through the chain rule of gradients and the modal representations
Z𝑚 = (𝑧1𝑚, ..., 𝑧𝑁𝑚), where 𝑧𝑖𝑚 = 𝑓𝑚 (𝑥𝑖𝑚 ;𝜃𝑚). Since ∇𝜃𝑚𝑍𝑚 is
not directly related to 𝛼𝑚 , Equation (13) becomes:

min
𝛼𝑚

∥𝛼𝑚∇Z𝑚
L𝑚 + (1 − 𝛼𝑚)∇Z𝑚

L0∥22, (16)

and Equation (14) still holdswith∇0 ≜ ∇Z𝑚
L0 and∇𝑚 ≜ ∇Z𝑚

L𝑚 .
The approximation can significantly reduce computation time by
not computing the gradients of encoders.

Learning Scheduler. In this part, we balance the learning pro-
cess among modalities by guiding one modality to learn from target
task loss L0 and others from knowledge distillation loss L𝑚 based
on the comparison of 𝛼𝑚 across modalities.

At every training step, we pick the𝑚∗ modality with the largest
𝛼𝑚 value:

𝑚∗ = argmax
𝑚

𝛼𝑚 . (17)

Since a large value of 𝛼𝑚 means learning more from the target
task than from knowledge distillation, the largest 𝛼𝑚∗ represents
the strong modality that should learn from the task first:

𝜃
(𝑡+1)
𝑚∗ = 𝜃

(𝑡 )
𝑚∗ − 𝜂∇

𝜃
(𝑡 )
𝑚∗

L (𝑡 )
0 , (18)

For other modalities, we let them learn from their teachers:

𝜃
(𝑡+1)
𝑚′ = 𝜃

(𝑡 )
𝑚′ − 𝜂∇

𝜃
(𝑡 )
𝑚′

L (𝑡 )
𝑚′ , 𝑚′ ≠𝑚∗, (19)

where 𝜂 refers to the learning rate.
We design such a learning scheduler for two reasons. The first

is to avoid modality suppression caused by modality imbalance. As
stated in Section 1 and 3.2, weak modalities learn less than strong
ones from the task, so we only let the strongest modality, i.e., the
𝑚∗ one, learn from the task and instruct others to learn from teach-
ers. As training progresses, weak modalities enhanced by teacher
knowledge have the opportunity to catch up with or even become
the strongest one and thus learn much from the task, so that we can
keep the dynamic balance among modalities. The second reason
is to avoid gradient conflicts on each modal encoder between task
loss and distillation loss in the same training step. As stated in the
theory of multi-objective optimization, the parameters optimized
by multiple losses are likely to encounter gradient conflicts, so we
force each modality to learn from only one source, either the task
or the teacher, in one training step.
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4.3 Multimodal Curriculum Learning
Integrating all of the above, we summarize the complete process of
our I2MCL method in this subsection. It is illustrated in Figure 2,
elaborated in Algorithm 1 and formulated in the Equation below:

𝜃
(𝑡+1)
𝑗

=


𝜃
(𝑡 )
𝑗

− 𝜂
1
𝑛
∇
𝜃
(𝑡 )
𝑗

𝑛∑︁
𝑖=1

𝑤
(𝑡 )
𝑖0 𝑙

(𝑡 )
𝑖0 , 𝑗 ∈

{
0, argmax

𝑚
𝛼
(𝑡 )
𝑚

}
,

𝜃
(𝑡 )
𝑗

− 𝜂
1
𝑛
∇
𝜃
(𝑡 )
𝑗

𝑛∑︁
𝑖=1

𝑤
(𝑡 )
𝑖 𝑗

𝑙
(𝑡 )
𝑖 𝑗

, others,

(20)
where 𝑛 is the size of minibatch. At the 𝑡𝑡ℎ step, the multimodal
module and the𝑚∗ modality with the largest 𝛼𝑚 learn from the
task, other modalities learn from their teachers, and all of them
learn from data in an easy-to-hard manner by data reweighting.

Concretely, we first derive the feature-based knowledge from
pretrained teachers on training set data with offline computation.
Then, we calculate multimodal task loss and unimodal distillation
losses with once forward propagation. After that, we conduct intra-
and inter-modal curriculum by updating the measurers 𝑤 and 𝛼 ,
which only add once extra backpropagation from task loss to the
multimodal module and 2𝑀 times one-layer backpropagations to
modal representations, i.e.,𝑀 times from multimodal module and
𝑀 times from distillation loss. It is worth noting that the backprop-
agations to modal representations are much more time-efficient
compared with those to modal encoders. We attach the running
time of our method in the Appendix to demonstrate it. Finally,
we update the learnable parameters, select the best checkpoint on
validation set and evaluate the final performance on test set.

5 EXPERIMENTS
In this section, we introduce the experimental setup (Section 5.1),
present the performances of our method on both modal fusion tasks
(Section 5.2) and modal interaction tasks (Section 5.3), and provide
some further empirical analysis (Section 5.4 and 5.5).

5.1 Experimental Setup
Tasks and Datasets. We conduct experiments on both modal

fusion tasks and modal interaction tasks. In modal fusion tasks, we
adopt four datasets from the area of multimodal affect computing,
which are provided and processed byMultiBench [46], a multimodal
benchmark with a diverse set of datasets and algorithms for fusion
problems. Following MultiBench, we treat these tasks as regression
ones when training but as classification ones with labels of positive
and negative sentiment when testing.

• MUStARD [13]: A dataset for multimodal sarcasm discovery,
compiled from popular TV shows, consisting of audio-visual
utterances annotated with sarcasm labels.

• CMU-MOSI [79]: A dataset for affect recognition, with a collec-
tion of video blogs from YouTube and rigorous annotation with
labels for sentiment intensity in [−3, +3].

• UR-FUNNY [29]: A dataset for multimodal humor detection,
consisting of video samples from TED talks annotated with posi-
tive or negative labels.

• CMU-MOSEI [80]: A large dataset for emotion recognition, con-
taining videos from YouTube and annotations of 9 discrete emo-
tions and 3-dimensional continuous emotions.

In modal interaction tasks, we use the prevalent vision-language
datasets, whose labels are determined jointly by both vision and
language modalities.

• SNLI-VE [74]: A dataset developed from SNLI [9] and Flickr30K
[76], consisting of image-sentence pairs and their relations as
labels, including entailment, neutral or contradictory. We follow
[74] and consider it as a three-way classification task.

• VQA-v2 [25]: The second version of the VQA dataset [4] that
builds from COCO [47] and contains open-ended questions for
images, which require an understanding of vision and language
to answer. We follow [2], treat it as a classification task with 3129
labels, and report the overall accuracy on test-dev set.

Comparable Methods. We compare our method with the fol-
lowing SOTA methods proposed for the under-optimized modality
problem. The comparison experiments are mainly conducted on
modal fusion tasks, for which these methods are proposed.

• Gradient-Blending (GB) [70]: A method to blend the gradients
across modalities with weighted unimodal losses based on the
overfitting-to-generalization ratios of the modalities.

• Uni-Modal Teacher (UMT) [19]: A method to introduce uni-
modal teachers to distill knowledge for all modalities.

• Adaptive Tracking Factor (ATF) [67]: A method to adjust the
learning rates of modalities based on their unimodal losses.

• Conditional Learning Speed (CLS) [73]: A method to take re-
balance training steps for the weak modality according to their
conditional learning speed measured by unimodal performances.

• On-the-fly Gradient Modulation with Generalization En-
hancement (OGM-GE) [50]: A method to balance modality
with gradient modulation based on unimodal logits and avoid
generalization drop by adding Gaussian noise.

Implementation details. To fairly evaluate our method, we
apply the comparable methods and our I2MCL to strictly the same
multimodal settings. In modal fusion tasks, we follow [46], build
a late-fusion model composed of GRU [16] encoders, a Concat
fusion module and an MLP output head, and adopt an AdamW
[48] optimizer with 0.001 learning rate, 0.01 weight decay and 200
training epochs. The teacher encoders are the same as the students
and pretrained in the same task. In model interaction tasks, we
follow [2], build a late-fusion model with a ResNet18 [30] vision
encoder, an LSTM [33] text encoder, a top-down attention layer for
modal interaction and an MLP output head, and adopt an Adamax
[38] optimizer with 0.002 learning rate, no weight decay and 30
training epochs. The teacher model is CLIP [52], which is 10 times
larger than the student encoders and is able to output good vision
and text representations. Besides, we adopt 𝛾𝑚 = 0.9 and 𝛽𝑚 = 1.0
without further tuning. The concrete model architectures and other
details are presented in the Appendix. With the settings above, we
report the average and standard deviation results of 3 runs with
different fixed random seeds on each dataset. The code is available
at https://github.com/zhouyw16/I2MCL.
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Table 1: Test accuracy (%) of differentmethods. “Uni” and “Mul” represent vanilla unimodal andmultimodal learning respectively.
“Audio”, “Vision” and “Text” represent the performances of the modal encoders evaluated by linear probing, and “Fusion” refers
to the results of modal fusion. The bold font denotes better performances in the multimodal setting.

Uni Mul GB UMT ATF CLS OGM-GE I2MCL (ours)

MUStARD

Audio 60.151.02 55.311.49 56.521.02 58.451.49 58.210.90 56.040.91 56.520.34 59.920.66
Vision 57.010.34 52.541.08 53.380.67 55.070.71 53.990.37 53.140.46 55.320.81 55.440.70
Text 64.490.68 61.231.09 63.530.34 64.010.49 63.770.81 63.770.49 62.320.49 63.530.90
Fusion 61.591.45 64.010.91 63.520.68 63.770.59 62.320.34 62.141.30 65.220.91

CMU-MOSI

Audio 47.101.26 42.940.92 50.560.83 47.790.69 48.631.80 43.260.75 44.671.86 50.151.55
Vision 50.910.61 48.331.53 51.170.52 52.400.38 51.831.07 49.311.24 50.710.14 52.640.96
Text 75.100.28 73.780.38 74.540.75 73.550.38 74.040.40 74.320.76 74.090.37 75.150.12
Fusion 71.801.38 74.490.57 73.120.40 72.760.29 73.011.39 72.051.02 74.540.52

UR-FUNNY

Audio 58.760.47 56.931.09 59.100.58 59.480.20 59.640.61 57.050.62 57.340.04 60.300.43
Vision 59.640.77 58.290.44 59.070.48 59.930.20 58.690.28 58.570.25 59.920.31 60.020.15
Text 62.760.94 59.800.62 61.090.64 62.790.16 62.570.74 61.750.49 62.560.47 62.820.25
Fusion 60.241.03 62.410.50 64.020.08 62.640.43 62.760.71 63.930.67 65.120.31

CMU-MOSEI

Audio 64.150.66 62.990.27 63.840.24 64.220.45 63.160.45 63.080.39 63.390.46 64.450.39
Vision 65.250.25 64.460.31 65.730.65 65.640.22 65.541.53 64.450.23 64.720.60 65.390.50
Text 79.340.18 79.150.28 79.520.21 79.210.16 79.150.50 79.110.64 79.220.09 79.540.37
Fusion 80.200.60 80.600.55 80.490.07 80.200.48 80.260.51 80.250.54 81.050.47

5.2 Results of Modal Fusion Tasks
Table 1 reports the comparison with existing methods over four
datasets in terms of test accuracy for binary classification. It is
shown that the proposed I2MCL method can outperform all the
multimodal baselines consistently on both individual modalities
and multimodal fusion. Specifically, we have the following observa-
tions. i) Compared with the methods only adjusting the size of loss,
gradient and learning rate, like ATF, CLS and OMG-GE, our I2MCL
incorporates knowledge from pretrained teachers and achieves rel-
atively large improvement. ii) Compared with the methods with
additional losses, like GB and UMT, our I2MCL is carefully designed
with a two-level curriculum to guide how the modalities learn from
data and losses, and thus outperforming them substantially. iii) Our
I2MCL can even outperform unimodal learning on some modalities
over the datasets like CMU-MOSI, UR-FUNNY and CMU-MOSEI,
which is mainly due to the combined effect of knowledge distilla-
tion, curriculum learning and mutual promotion among modalities
in multimodal learning.

Table 2: Test-dev accuracy on VQA-v2 and test accuracy on
SNLI-VE. “KD” means adding knowledge distillation loss to
optimization objective; “Intra” means adding intra-modal
curriculum; “Inter” means adding inter-modal curriculum.

KD Intra Inter VQA-v2 SNLI-VE

51.770.19 68.830.07
✓ 53.160.19 68.910.15
✓ ✓ 53.640.15 69.110.14
✓ ✓ 54.140.20 70.630.08
✓ ✓ ✓ 54.340.11 70.950.13

5.3 Results of Modal Interaction Tasks
Table 2 presents the results over VQA-v2 and SNLI-VE datasets.
Since other baselines are not proposed and not suitable for these
tasks, we evaluate our method by means of the ablation experiment,
which presents the effects of knowledge distillation, intra-modal
curriculum and inter-modal curriculum. It is shown that the combi-
nation of these strategies can improve model performances signifi-
cantly and reach average absolute improvements of 2.57% on VQA
test-dev set and 2.12% on SNLI-VE test set.

5.4 Analysis of Intra-Modal Curriculum
To further analyze how our I2MCL method works, we visualize the
intra-modal curriculum process by tracking the weight changes of
typical "hard" and "easy" data within different modalities in Table 3.
According to the definition in Section 4.1, the weight range is [0, 𝑒],
and the larger the weight, the simpler the data. It can be observed
that complex images or questions have smaller weights at different
epochs, while simple ones always possess larger weights.

5.5 Analysis of Inter-Modal Curriculum
Figure 3 illustrates the process of inter-modal curriculum, from
which we have the following observations. i) All modalities have
the opportunity to learn from the task in the training process,
ensuring all of them can learn the task-specific knowledge. ii) The
text modality has relatively large 𝛼 and it learns from the task more
often, which is consistent with its better performance than other
modalities as shown in Table 1, verifying that it is reasonable to
choose 𝛼 as the inter-modal measurer. iii) The 𝛼 values of weak
modalities like vision and audio generally increase with training
steps thanks to the knowledge they learn from teachers, which
phenomenon reflects the overall improvement of modality balance.
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Table 3: The visualization of intra-modal curriculum with VQA-v2 data.
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Figure 3: The visualization of inter-modal curriculum. For each figure, the upper subfigure illustrates how the inter-modal
criterion 𝛼𝑚 changes with training steps for each modality, and the lower one illustrates which modality is the one with the
largest 𝛼𝑚 , learning from the task. “T”, “V” and “A” refer to Text, Vision and Audio modality respectively.

Besides, we compare our inter-modal curriculum with some
other possible strategies where vision and text modalities learn from
the task and teachers in different ways, and the results are reported
in Table 4. It is observed that our I2MCL in the last row outperforms
all other strategies. i) Compared with the first four rows where
each modality can only learn from one source, I2MCL can guide
them dynamically to learn from both sources. ii) Compared with
the fifth row, I2MCL avoids the possible gradient conflict between
two losses in each training step. iii) Compared with the sixth and
seventh row, I2MCL comprehensively considers 𝛼 across modalities
and schedules the learning according to its relative size instead of
its absolute size.

6 CONCLUSION
In this paper, we point out the under-optimized modality problem
in multimodal learning from a new perspective of intra-modal data
and inter-modal mutual influence, based on which we propose
I2MCL, a multimodal learning method with intra- and inter-modal
curriculum considering both data difficulty and modality balance
to address the issue. The method is generic enough to be applied
to various multimodal settings, covering both modal fusion and
interaction tasks. A possible and promising future direction is to
adapt it to the pretraining or finetuning process of large multimodal
models in this era of deep learning and large models.

Table 4: Results of possible inter-modal curriculum strategies.
The values in the first four columns represent how much to
learn from task or teacher. I is an indicator function.

Vision Text VQA-v2 SNLI-VE
Task Teacher Task Teacher +KD+Intra+KD+Intra

1 0 1 0 51.850.18 68.860.09
0 1 0 1 53.860.16 67.730.06
1 0 0 1 50.600.13 67.040.12
0 1 1 0 53.890.10 70.630.21
1 1 1 1 53.640.15 69.110.14
𝛼𝑣 1−𝛼𝑣 𝛼𝑡 1−𝛼𝑡 52.930.13 67.980.09

1−𝛼𝑣 𝛼𝑣 1−𝛼𝑡 𝛼𝑡 53.160.14 68.960.17
I(𝛼𝑣 ≥ 𝛼𝑡 ) I(𝛼𝑣 < 𝛼𝑡 ) I(𝛼𝑣 ≤ 𝛼𝑡 ) I(𝛼𝑣 > 𝛼𝑡 ) 54.340.11 70.950.13
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A APPENDIX FOR METHOD
A.1 I2MCL Algorithm

Algorithm 1 I2MCL Algorithm
Require: The moving average factor 𝛾𝑚 , regularizer coefficient

𝛽𝑚 and pretrained teacher model 𝑔𝑚 parameterized by 𝜙𝑚 .
1: Initialize the multimodal model parameters {𝜃0, 𝜃𝑚}.
2: Precompute feature-based knowledge 𝑔𝑚 (𝑥𝑖𝑚 ;𝜙𝑚).
3: while not convergent do
4: Calculate multimodal task loss 𝑙𝑖0 via Eq. (2);
5: Calculate unimodal distillation loss 𝑙𝑖𝑚 via Eq. (7);
6: Update𝑤𝑖0 and𝑤𝑖𝑚 for the intra-model curriculum via Eq.

(8) and (12);
7: Update 𝛼𝑚 for the inter-modal curriculum via Eq. (14);
8: Update 𝜃0 and 𝜃𝑚 via Eq. (20).
9: end while
10: Return {𝜃∗0 , 𝜃

∗
𝑚}.

A.2 Intra-Modal Curriculum
A.2.1 Calculation of Data Weights𝑤𝑖0 and𝑤𝑖𝑚 . In this paper, we
follow Superloss [12] and obtain the optimization objective:

𝑤𝑖𝑚 = argmin
𝑤𝑖𝑚

𝑤𝑖𝑚𝑙𝑖𝑚 − 𝜆𝑚𝑤𝑖𝑚 + 𝛽𝑚 (log𝑤𝑖𝑚)2, (21)

The value of𝑤𝑖𝑚 can be resolved with Alternative Optimiza-
tion Strategy (AOS). First, we fix𝑤𝑖𝑚 and calculate the loss value
𝑙𝑖𝑚 of each data 𝑥𝑖𝑚 within the𝑚𝑡ℎ modality parameterized by 𝜃𝑚 :

𝑙𝑖𝑚 = L(𝑥𝑖𝑚 ;𝜃𝑚,𝑤𝑖𝑚), (22)

and define the difficulty criterion 𝜆𝑚 as the moving average of loss:

𝜆
(𝑡 )
𝑚 = 𝛾𝑚𝜆

(𝑡−1)
𝑚 + (1 − 𝛾𝑚) 1

𝑁

𝑁∑︁
𝑖=1

𝑙
(𝑡 )
𝑖𝑚

, (23)

where 𝛾𝑚 ∈ [0, 1] is a discount factor and 𝑡 refers to training steps.
Then, we fix 𝑙𝑖𝑚 and 𝜆𝑚 to obtain𝑤𝑖𝑚 by resolving the derivative

of Equation (21) with the condition of𝑤𝑖𝑚 > 0:
𝜕

𝜕𝑤𝑖𝑚

(
𝑤𝑖𝑚𝑙𝑖𝑚 − 𝜆𝑚𝑤𝑖𝑚 + 𝛽𝑚 (log𝑤𝑖𝑚)2

)
= 0,

⇐⇒ (𝑙𝑖𝑚 − 𝜆𝑚)𝑤𝑖𝑚 + 2𝛽𝑚 (log𝑤𝑖𝑚) = 0,

⇐⇒ 𝑙𝑖𝑚 − 𝜆𝑚

2𝛽𝑚
= − log𝑤𝑖𝑚

𝑤𝑖𝑚
,

⇐⇒ 𝑐 = 𝑑𝑒𝑑 ,

where 𝑐 =
𝑙𝑖𝑚 − 𝜆𝑚

2𝛽𝑚
∈ R, 𝑑 = − log𝑤𝑖𝑚 ∈ R.

(24)

The solution is 𝑑 = W(𝑐), 𝑐 ≥ − 1
𝑒 , where W refers to Lam-

bert W function. When 𝑐 ≤ − 1
𝑒 , we define 𝑑 = W(− 1

𝑒 ) = −1 to
guarantee the continuity of the function.

To sum up, we can give the solution of𝑤𝑖𝑚 :

𝑤𝑖𝑚 =


𝑒, 𝑙𝑖𝑚 − 𝜆𝑚 ≤ −2𝛽𝑚/𝑒,

𝑒
−W( 𝑙𝑖𝑚−𝜆𝑚

2𝛽𝑚 )
, 𝑙𝑖𝑚 − 𝜆𝑚 > −2𝛽𝑚/𝑒,

(25)

A.2.2 Visualization. It can be observed that when 𝑙𝑖𝑚 > 𝜆𝑚 ,𝑤𝑖𝑚 >

1 and when 𝑙𝑖𝑚 < 𝜆𝑚 , 𝑤𝑖𝑚 < 1, which encourages the model to
learn more from easy data and reduces the impact of difficult data.
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(b) 𝑤𝑖𝑚 = 𝑤𝑖𝑚 (𝑙𝑖𝑚, 𝜆𝑚 ) .

A.3 Inter-Modal Curriculum
A.3.1 MGDA. MGDA utilizes the Karush-Kuhn-Tucker (KKT) con-
dition. For a modal encoder 𝑓𝑚 with 𝜃𝑚 , the KKT condition is that
there exists an 𝛼𝑚 ∈ [0, 1] such that 𝛼𝑚∇𝑚 + (1 − 𝛼𝑚)∇0 = 0. The
solution satisfying the condition is named a Pareto stationary point,
which can be acquired by considering the optimization problem:

min
𝛼𝑚

∥𝛼𝑚∇𝑚 + (1 − 𝛼𝑚)∇0∥22, (26)

[18] has proved that the solution is either 0 satisfying the KKT
condition, or provides a direction to guide both of the gradients.
Therefore, we can measure the gradient relationship by solving
Equation (26):

(∇𝑚 − ∇0) (𝛼𝑚∇𝑚 + (1 − 𝛼𝑚)∇0) = 0,

⇐⇒ 𝛼𝑚∇2
𝑚 + (1 − 2𝛼𝑚)∇𝑇𝑚∇0 − (1 − 𝛼𝑚)∇2

0 = 0,

⇐⇒ 𝛼𝑚 (∇2
𝑚 − 2∇𝑇𝑚∇0 + ∇2

0) = ∇2
0 − ∇𝑇𝑚∇0,

⇐⇒ 𝛼𝑚 =
(∇0 − ∇𝑚)𝑇∇0
∥∇0 − ∇𝑚 ∥22

.

(27)

A.3.2 Visualization. Figure 5 visualizes Equation (14).
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Figure 5: Visualization of 𝛼𝑚 .

A.3.3 Efficient MGDA. Furthermore, we follow [61] to avoid the
time consumption on the calculation of gradients ∥∇𝜃𝑚L0∥ and
∥∇𝜃𝑚L𝑚 ∥ by approximating them with ∥∇𝑍𝑚

L0∥ and ∥∇𝑍𝑚
L𝑚 ∥,

where 𝑍𝑚 is modal representations output by modal encoders.

∥𝛼𝑚∇𝑚 + (1 − 𝛼𝑚)∇0∥22,
= ∥𝛼𝑚∇𝜃𝑚L𝑚 + (1 − 𝛼𝑚)∇𝜃𝑚L0∥22,
≤ ∥∇𝜃𝑚𝑍𝑚 ∥22 ∥𝛼𝑚∇𝑍𝑚

L𝑚 + (1 − 𝛼𝑚)∇𝑍𝑚
L0∥22,

(28)

Since ∇𝜃𝑚𝑍𝑚 is not directly related to 𝛼𝑚 , we can drop ∇𝜃𝑚𝑍𝑚
and optimize (29) instead of Equation (26):

min
𝛼𝑚

∥𝛼𝑚∇𝑍𝑚
L𝑚 + (1 − 𝛼𝑚)∇𝑍𝑚

L0∥22 . (29)
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Table 5: Dataset Information

Dataset Task Modality Training Set Validation Set Test Set Metrics Classes

MUStARD Multimodal Classification Audio, Vision, Text 412 137 138 Accuracy 2
CMU-MOSI Multimodal Classification Audio, Vision, Text 1283 214 686 Accuracy 2
UR-FUNNY Multimodal Classification Audio, Vision, Text 8074 1034 1058 Accuracy 2
CMU-MOSEI Multimodal Classification Audio, Vision, Text 16265 1869 4643 Accuracy 2
VQA-v2 Visual Question Answering Vision, Text 443757 214354 447793 Accuracy 3129
SNLI-VE Visual Entailment Vision, Text 529527 17858 17901 Accuracy 3

Table 6: Test accuracy (%). “KD” means adding knowledge distillation loss to optimization objective; “Intra” means adding
intra-modal curriculum; “Inter” means adding inter-modal curriculum.

KD Intra Inter MUStARD CMU-MOSI UR-FUNNY CMU-MOSEI
Audio Vision Text Fusion Audio Vision Text Fusion Audio Vision Text Fusion Audio Vision Text Fusion

✓ 56.76 52.66 62.32 62.80 48.07 51.88 74.59 73.32 59.17 59.92 62.38 63.33 63.96 64.77 78.95 80.21
✓ ✓ 58.94 53.38 63.41 63.04 49.65 51.93 74.79 73.68 59.74 59.55 62.51 64.43 63.45 65.19 79.53 80.50
✓ ✓ ✓ 59.92 55.44 63.53 65.22 50.15 52.64 75.15 74.54 60.30 60.02 62.82 65.12 64.45 65.39 79.54 81.05

Table 7: Training time (second per epoch). We run the methods multiple times on the same GPU and report the average time.
“Mul” represents vanilla multimodal learning.

Mul GB UMT ATF CLS OMG-GE +Intra +Inter I2MCL w/o Eq. (16) I2MCL w/ Eq. (16)

CMU-MOSEI 12.09 55.48 12.28 23.69 14.97 14.81 13.63 14.73 23.17 16.55
SNLI-VE 890 - - - - - 914 936 1903 955

B APPENDIX FOR EXPERIMENTS
B.1 Dataset Information
Table 5 summarizes the information of all datasets involved in this
paper. The first four datasets belong to the Modal Fusion Task and
the last two are included in Modal Interaction Task.

B.2 Model Architecture
Figure 6 depicts the architectures of the models we build for modal
fusion and interaction tasks, following MultiBench 1 and Bottom-
Up-Attention 2 respectively.

GRU

GRU

Concat

Vision

Audio

Text

GRU MLP

(a) For modal fusion tasks.

ResNet

LSTM

Top-down 

Attention

Vision

Text

MLP

(b) For modal interaction tasks.

Figure 6: Model Architecture.

B.3 Compared with Pretrained Teacher
Table 8 reports the gap between learning from the teacher and
directly utilizing features output by the teacher. It is observed that
under the same condition of a top-down attention [2] interaction
module and an MLP output head, the model trained through I2MCL
1https://github.com/pliang279/MultiBench
2https://github.com/hengyuan-hu/bottom-up-attention-vqa

can outperform its counterpart with pretrained encoders on SNLI-
VE test set. Although our method cannot outperform on VQA-
v2 test-dev set, it is acceptable because the ResNet18 and LSTM
encoders are 10 times smaller than CLIP encoders and they are not
pretrained on large external data like CLIP.

Table 8: Comparison between learning from teachers (I2MCL)
and directly utilizing teachers’ features (Pretrained Teacher).

VQA-v2 SNLI-VE

Pretrained Teacher 57.670.03 70.600.11
I2MCL (Ours) 54.340.11 70.950.13

B.4 Ablation Study on Modal Fusion Tasks
We conduct the ablation study on modal fusion tasks and compare
the results by gradually adding knowledge distillation, intra-modal
curriculum and inter-modal curriculum in Table 6. It is observed
that each part of our method plays a key role on performance
improvement.

B.5 Analysis of Time Complexity
We report the average time per epoch of the comparative methods
and our I2MCL over CMU-MOSEI and SNLI-VE in Table 7, which
demonstrates that the time complexity of our I2MCL is acceptable.
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